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LETI'ER TO THE EDITOR 

A modified regularized longlwave equation with an exact 
two-soliton solution 

J D Gibbont, J C EilbeckS and R K Doddt 
t Department of Mathematics, UMIST, PO Box 88, Manchester M60 IQD, UK 
$ Department of Mathematics, Heriot-Watt University, Riccarton, Cume, Edinburgh 
EH14 4AS, UK 

Received 8 July 1976 

Abstrnct. Numerical studies of the regularized long-wave (RLW) equation of Peregrine and 
Benjamin and colleagues 

U, + U, + ( 6 ~ ' -  U,,), 0 

suggests it has a two-soliton solution although an analytic form for this has not yet been 
found. We show that a modified form of the RLW equation 

U ,  + U, + ( 4 2  + 2 w,u, - U.,), = 0, 

with U = w, = U,, has an exact two-soliton solution. The modified equation has the same 
solitary-wave solution as the original equation and its analytic two-soliton solution agrees 
closely with the numerical solution of the RLW equation. 

As a model equation describing a variety of interesting non-linear wave phenomena, 
the Korteweg-de Vries (KDV) equation 

ut + U, + (6u2+ uXx),  = 0 (1) 
has received considerable attention in the literature (Scott et a1 1973). An alternative 
model for non-linear waves, first suggested by Peregrine (1966) and Benjamin et a1 
(1972) is the so called regularized long-wave (RLW) equation 

ut + U, + ( 6 ~  - U,,), = 0. (2) 
The main advantage of the RLW equation as a model for non-linear unidirectional 

long waves is that an analysis of the linearized equation shows that the velocity of 
sinusoidal solutions f ( ~ )  exp(ircx - iot) has the form 

u ( K ) = ( I + K ~ ) - ~  (3) 
whereas for the KDV equation we find 

(4) U ( K )  = 1 -K2. 

Hence for large K (short wavelength) the velocity of RLW solutions tends to zero 
whereas the velocity of KDV solutions becomes negative and unbounded. 

A great deal is known about soliton and multi-soliton solutions of the KDV equation 
but no corresponding results are known about multi-soliton solutions of the RLW 
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equation. The corresponding single solitary-wave solutions are 

RLW: 

KDV: 

U(X, t) = $[a:/(l- a:)] sech2 i{alx -[alt/(l -a:)]+sl} 
U (x ,  t) = aa: sech’ 3alx - a l (  1 + a:)t + S1]. 

( 5 )  

(6) 

However recent numerical work by Eilbeck and McGuire (1976) has shown that the 
RLW equation appears to have at least two- and three-soliton solutions, although their 
analytic forms are as yet unknown. The purpose of this letter is to show that although we 
cannot yet solve this problem, it is possible to construct an equation which is close to the 
RLW equation in some physical sense and yet has an exact two-soliton solution. 

This new equation is required to have the following properties: (i) the same short 
wavelength properties as the RLW equation; (ii) the same solitary-wave (single-soliton) 
solution as the RLW equation; (iii) an exact two-soliton solution. 

Such an equation can be constructed using Hirota’s method of the dependent 
variable transformation (Hirota and Satsuma 1976a). Defining 

then the transformation U = (In fix* transforms the KDV equation into 
[(D4 +D2 + DT)f(x, t)f(x’, t’)],=,, = 0. 

r = t  

A one-parameter solution of (8) is 

f = l+eel ;  d1 =alx-wlt+S,. (9) 

a:+a:--alwl = O * q  = al(l+a:). 

It is obvious that the form of the operator in (8) determines the relation between w1 and 
al, i.e. 

(10) 
Putting U = -(lnflXr in the RLW equation we find the one-soliton solution of the RLW 
equation (5) can be put in the same form as (9) using the relation 

(1 1) 
Since this can be rewritten as a:o: + a lwl  - w: = 0 this suggests the appropriate 
modification of equation (8) is 

0 1 = a 1 ( 1 - a :)- l. 

[ (D~T~--DT-T~)~(X,  t)f(x’, t ’ ) ]x=x,  = 0. 
t = f ‘  

Since for the RLW equationf = exp q, where qxr = -U, we get on substitutingforfin (12) 

u ~ + u , + ( ~ u ~ + ~ w , u ~ ) ,  -U*,[ =O, (13) 
where U = wr = U,. 

This is our modified version of the RLW equation, differing only in the term 2wXur in 
the non-linear part. Since in all physical applications the KDV and RLW equations are 
obtained using perturbation theory (Benjamin et a1 1972) from which the zeroth order 
term is U, +U, = 0, the modified version of the RLW equation is easily shown to be 
eqhivalent to both the RLW and KDV equations to the same order of perturbation 
(U, = -U, j u2 = WXV,). The modified RLW equation (13) has the same solitary-wave 
solution as the RLW equation (2) and has the following two-soliton solution: 

(14) f =  1+ee1+ee2+A eel+% 
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where 

(15) 
A = - ~ 2 ) 2 ( ~ 1 - ~ 2 ) 2 + ( ~ 1 - ~ 2 ) ( ~ 1 - ~ 2 ) - ( ~ 1 - ~ 2 ) 2  

(a1 +az>2(ol + 0 2 1 2 +  (a1 + a2)(01+02) - ( 0 1  + o 2 ) *  

wj = U j / ( l  - a? ) .  

and 

e, = aix -wit + ai;  (16) 

We have A > 0 for all real a l ,  az and hence we can calculate the two-soliton phase shift 
A which occurs when the larger soliton passes through the smaller (figure 1) 

A = - 3 In A. (17) 
It is interesting that A depends on both al and az and not just on the ratio a l / a z  as in the 
KDV two-soliton solution (Hirota 1971). 

U t  

Figure 1. Numerical solution of the RLW equation (Eilbeck and McGuire 1976) with 
two-soliton initial conditions. 

Since both the RLW equation and the modified RLW equation have the same 
single-soliton solution it is interesting to compare the numerical two-soliton solution of 
the RLW equation with the exact two-soliton solution of the modified RLW equation. 
Figure 1 shows the numerical two-soliton solution of the RLW equation and in figure 2 
the numerical two-soliton phase shifts obtained from numerically integrating the RLW 
equation (with various choices of the amplitudes of the two colliding solitons) are 
compared with the analytic form (17) for the modified RLW equation. The fit is generally 
good, some slight discrepancy arising from the fact that the numerical RLW phase shifts 
for each soliton are not exactly equal and opposite (Eilbeck and McGuire 1976, Eilbeck 
er al 1976), where (17) with an appropriate choice of sign holds for both solitons in the 
modified RLW equation. 

Finally we should point out that there is some lack of uniqueness in the derivation of 
(12). A choice of D3T + DT - D2 would have given the same dispersion relation (1 1). 
However this choice leads to a different equation for u(x ,  r )  and a different two-soliton 
phase shift which does not give good agreement with the numerically computed results 
of the RLW equation. Also two other equations similar to (13) have been suggested by 
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Figure 2. Plots of the RLW numerical two-soliton phase shifts and the modified RLW analytic 
two-soliton phase. shifts as a ratio of the KDV two-soliton phase. shifts. The numerical RLW 
phase shifts, with an estimated 2.5% error, are plotted as the vertical bars, and the analytic 
result as the broken curve. 'Ihe amplitude of the largest soliton is +Cl where C1 = 
aJ(1 - a t )  and R is the ratio of the two soliton amplitudes. 

Ablowitz eta1 (1974) and Hirota and Satsuma (1976b). Both of these equations involve 
the transformation U = (Innxx and hence their solitary-wave solution is different from 
that of the RLW equation. 

One of us (JDG) would like to acknowledge the financial support of an SRC Research 
Assist antship. 
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